Your Good Partner in Biology Research

SARS-CoV-2 Spike RBD Antibody Pair 1

  • 货号:
    CSB-EAP33245
  • 规格:
    ¥7150
  • 图片:
    • CSB-EAP33245 is a solid phase sandwich Enzyme Linked-Immuno-Sorbent Assay (Sandwich ELISA). An antibody specific for SARS-CoV-2 Spike RBD has been pre-coated onto the microwells. The SARS-CoV-2 Spike RBD protein in samples is captured by the coated antibody after incubation. Following extensive washing, another antibody HRP conjugated specific for SARS-CoV-2 Spike RBD is added to detect the captured SARS-CoV-2 Spike RBD protein. Followed by Tetramethyl-benzidine (TMB) reagent. Solution containing sulfuric acid is used to stop color development and the color intensity which is proportional to the quantity of bound protein is measurable at 450nm.
  • 其他:

产品详情

  • Uniprot No.:
  • 别名:
    S; 2; Spike glycoprotein; S glycoprotein; E2; Peplomer protein)
  • 反应种属:
    Human Novel Coronavirus (SARS-CoV-2/ 2019-nCoV)
  • 免疫原:
    Llama with human IgG1 Fc
  • 免疫原种属:
    Human Novel Coronavirus (SARS-CoV-2/ 2019-nCoV)
  • 浓度:
    It differs from different batches. Please contact us to confirm it.
  • 产品提供形式:
    Liquid
  • 蛋白全称:
    Human Novel Coronavirus Spike glycoprotein (S)
  • 宿主:
    Capture: Llama with human IgG1 Fc
    Detection: Mouse with human IgG1 Fc
  • 保存缓冲液:
    Capture: 50% Glycerol, 0.01M PBS, PH 7.4
    Detection: 50% Glycerol, 0.01M PBS, PH 7.4
  • 成分:
    Capture: CSB-EAP33245C
    Detection: CSB-EAP33245B(HRP)
    Reagents are sufficient for at least 5 x 96 well plates using recommended protocol.
  • 应用范围:
    S-ELISA
  • 应用说明:
    We recommend using the capture antibody at a concentration of 1ug/ml and the detection antibody at a concentration of 0.42ug/ml.Optimal dilutions should be determined experimentally by the researcher.
  • 货期:
    Basically, we can dispatch the products out in 1-3 working days after receiving your orders. Delivery time maybe differs from different purchasing way or location, please kindly consult your local distributors for specific delivery time.

产品评价

问答及客户评论

 常见问题解答
Q:

我正在寻找一对用于SARS-COV2的夹心法检测的抗体。你们有相关产品吗?

A:
Cusabio提供以下匹配抗体对,用于Sandwich ELISA法检测SARS-CoV-2刺突蛋白。Cusabio保证抗体适用于我们网站和数据表中所述的应用/物种,如果抗体不符合我们数据表中所述的要求,将提供更换或退款服务。 CSB-EAP33245 SARS-CoV-2 Spike RBD Antibody Pair 1 https://www.cusabio.com/Antibody-Pairs/S-Antibody-Pair-12928623.html 浓度: 捕获抗体:1mg/ml 检测抗体: 0.42mg/ml 如果您还需要标准蛋白,我们推荐以下产品。CSB-MP3324GMY1b1 https://www.cusabio.com/Recombinant-Protein/Recombinant-Human-Novel-Coronavirus-Spike-glycoprotein-S---partial--12928577.html

靶点详情

  • 功能:
    attaches the virion to the cell membrane by interacting with host receptor, initiating the infection. Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein. Binding to host NRP1 and NRP2 via C-terminal polybasic sequence enhances virion entry into host cell. This interaction may explain virus tropism of human olfactory epithelium cells, which express high level of NRP1 and NRP2 but low level of ACE2. The stalk domain of S contains three hinges, giving the head unexpected orientational freedom. Uses human TMPRSS2 for priming in human lung cells which is an essential step for viral entry. Can be alternatively processed by host furin. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.; mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.; Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.; May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity.
  • 基因功能参考文献:
    1. Study presents crystal structure of C-terminal domain of SARS-CoV-2 (SARS-CoV-2-CTD) spike S protein in complex with human ACE2 (hACE2); hACE2-binding mode similar overall to that observed for SARS-CoV. However, details at the binding interface show that key residue substitutions in SARS-CoV-2-CTD slightly strengthen the interaction and lead to higher affinity for receptor binding than SARS-CoV receptor-binding domain. PMID: 32378705
    2. crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2 PMID: 32365751
    3. crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2 PMID: 32320687
    4. Out of the two isolates from India compared to the isolates from Wuhan, China, one was found to harbor a mutation in its receptor-binding domain (RBD) at position 407 where, arginine was replaced by isoleucine. This mutation has been seen to change the secondary structure of the protein at that region and this can potentially alter receptor binding of the virus. PMID: 32275855
    5. Structural modeling of the SARS-CoV-2 spike glycoprotein show similar receptor utilization between SARS-CoV-2 and SARS-CoV, despite a relatively low amino acid similarity in the receptor binding module. Compared to SARS-CoV and all other coronaviruses in Betacoronavirus lineage B, an extended structural loop containing basic amino acids were identified at the interface of the receptor binding (S1) and fusion (S2) domains. PMID: 32245784
    6. crystal structure of CR3022, a neutralizing antibody from a SARS patient, in complex with the receptor-binding domain of the SARS-CoV-2 spike (S) protein to 3.1 A; study provides insight into how SARS-CoV-2 can be targeted by the humoral immune response and revealed a conserved, but cryptic epitope shared between SARS-CoV-2 and SARS-CoV PMID: 32225176
    7. SARS-CoV and SARS-CoV-2 spike proteins have comparable binding affinities achieved by balancing energetics and dynamics. The SARS-CoV-2-ACE2 complex contains a higher number of contacts, a larger interface area, and decreased interface residue fluctuations relative to the SARS-CoV-ACE2 complex. PMID: 32225175
    8. Interaction interface between cat/dog/pangolin/Chinese hamster ACE2 and SARS-CoV/SARS-CoV-2 S protein was simulated through homology modeling. Authors identified that N82 of ACE2 showed closer contact with receptor-binding domain of S protein than human ACE2. PMID: 32221306
    9. SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs; determined cryo-EM structures of the SARS-CoV-2 S ectodomain trimer. PMID: 32201080
    10. Study demonstrates that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. PMID: 32155444
    11. The ACE2-B0AT1 complex exists as a dimer of heterodimers. Structural alignment of the RBD-ACE2-B0AT1 ternary complex with the S protein of SARS-CoV-2 suggests that two S protein trimers can simultaneously bind to an ACE2 homodimer. PMID: 32142651
    12. study demonstrated SARS-CoV-2 S protein entry on 293/hACE2 cells is mainly mediated through endocytosis, and PIKfyve, TPC2 and cathepsin L are critical for virus entry; found that SARS-CoV-2 S protein could trigger syncytia in 293/hACE2 cells independent of exogenous protease; there was limited cross-neutralization activity between convalescent sera from SARS and COVID-19 patients PMID: 32132184
    13. study determined a 3.5-angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation; provided biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S PMID: 32075877

    显示更多

    收起更多

  • 亚细胞定位:
    Virion membrane; Single-pass type I membrane protein. Host endoplasmic reticulum-Golgi intermediate compartment membrane; Single-pass type I membrane protein. Host cell membrane; Single-pass type I membrane protein.
  • 蛋白家族:
    Betacoronaviruses spike protein family